The Effect of Rolling Temperature on the Microstructure and Mechanical Properties of Surface-Densified Powder Metallurgy Fe-Based Gears Prepared by the Surface Rolling Process

نویسندگان

  • Di Chen
  • Dekai Li
  • Jingguang Peng
  • Taolei Wang
  • Biao Yan
  • Wei Lu
چکیده

In this investigation, the surface-rolling process was performed to improve the performance of PM (powder metallurgy) parts. Different rolling temperatures were applied and the effect of rolling temperature on the microstructure and mechanical properties of the surface dense layers in the samples were investigated. In the study, room temperature and temperatures of 100 ◦C, 200 ◦C, 300 ◦C were studied during the rolling process. The results confirmed that the sample prepared with a pre-heated temperature of 200 ◦C had the lowest porosity at the surface area. It also exhibited the highest surface hardness and wear resistance. The optimum rolling temperature was determined to be 200 ◦C and the related mechanism was discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Surface Densification on the Microstructure and Mechanical Properties of Powder Metallurgical Gears by Using a Surface Rolling Process

Powder metallurgy (PM) components are widely used in the auto industry due to the advantage of net-shape forming, low cost, and high efficiency. Still, usage of PM components is limited in the auto industry when encountering rigorous situations, like heavy load, due to lower strength, hardness, wear resistance, and other properties compared to wrought components due to the existence of massive ...

متن کامل

Effect of Carbon Content on the Properties of Iron-Based Powder Metallurgical Parts Produced by the Surface Rolling Process

In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. %) on the rolling densific...

متن کامل

Effect of annealing process on microstructure and mechanical properties of high manganese austenitic TWIP steel

In the present study, the influence of annealing temperature on mechanical properties and the microstructure of a high manganese austenitic steel (Fe-30Mn-4Al-4Si-0.5C) was investigated. X-ray diffractometry, optical and scanning electron microscopy, hardness and tensile tests were used to analyze the relationship between mechanical properties and microstructure after annealing process. The res...

متن کامل

Development of a Predictive Finite Element Model For Investigation of Phases Behavior After Cold Rolling Process

 One of the surface defects that arise in sheet metal working is when the part removes from the die. Since there are no external forces to make this defect, the origin of such fail is known as residual stress. Residual stress can develop in sheet metal forming due to non uniform deformation. In this paper, the workpiece is carbon steel with different volume fractions and arrangement of ferrite ...

متن کامل

Magnificent Grain Refinement of Al-Mg2Si Composite by Hot Rolling

The effect of chemical composition and the hot rolling operations on the microstructure and mechanical properties of in situ aluminum matrix composite with Mg2Si phase as the reinforcement was studied. It was revealed that the modification by phosphorous results in the rounder (more spherical) primary and secondary (eutectic) magnesium silicide intermetallics. During hot rolling, the primary pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017